
Subclassing Windows From
EXE Files In 16-Bit Applications
by John Chaytor

If you want to subclass a window
from an external application in

Delphi you normally need to
perform this subclassing in a DLL
due to the restriction imposed on
the use of smart callbacks through-
out the VCL. This article demon-
strates a technique which does not
require a DLL. You can subclass
totally within an EXE and circum-
vent this restriction by the use of a
short assembler routine.

Smart Callbacks Directive {$K}
This directive affects the way that
entry code for exported functions
in an EXE file is generated. It does
not affect DLLs, this is why you can
subclass within a DLL but not an
EXE file. This directive has global
scope and is implemented during
the link phase. This means that a
whole EXE file will either use smart
callbacks or not use them: you
cannot switch it on and off. When
the $K directive is used an applica-
tion does not need to call MakeProc-
Instance and FreeProcInstance for
callback functions (although it
does no harm if you do so). This
option can be found on the
Compiler Options page of the
Options|Project dialog box.

Why Use Smart Callbacks?
Smart callbacks were implemented
to avoid the need for an application
to call MakeProcInstance for each
exported callback function.
Microsoft created the MakeProcIn-
stance API to ensure that the DS
register was set up correctly for
your callback routine. However, for
smart callbacks to work correctly
the assumption is that the DS and
SS registers have the same value. If
this is not the case, it’s GPF time!

How MakeProcInstance Works
To use MakeProcInstance you pass
the address of the exported call-
back function and the hInstance

variable. The function is defined:

function MakeProcInstance(
 Prot: TFarProc; Instance:
 THandle): TFarProc;

The address returned by this API
call should then be passed as the
address of the callback function to
API calls rather than the original
function address. MakeProcInstance
creates a small piece of code which
essentially does the following:

MOV AX,hInstance
CALL YourCallbackFunction.

As you can see, this routine is sim-
ply loading the AX register with the
hInstance value (ie your applica-
tion’s DS register value). The entry
code of your exported function can
use this fact to load the DS register
properly so you can access vari-
ables in your own data segment.

If you refer to page 177 of the
Delphi 1 Object Pascal Language
Guide you will see that it describes

in detail the assembler code gener-
ated for the entry and exit code of
an exported function. Listing 1
shows an empty exported function
along with the code that would be
generated by the compiler.

As you can see, that simple
empty function created 17 lines of
assembler code. This assumes that
stack checking is disabled (more
on this later). As a side point, this
is why, when using the integrated
debugger, if the line of code to be
executed is on the begin statement
you cannot see the contents of the
local variables; when you step over
the begin line, the local variables
are available.

If you look carefully at the entry
code you will see that the first line
(MOV AX,DS) seems to be incompat-
ible with MakeProcInstance as it
overwrites the AX register with the
DS register, which would make the
code generated by MakeProcIn-
stance useless! Also, line 7 of the
code (MOV DS,AX) simply copies it
back, which at face value seems

function MyExportedFunction(X,Y: Integer): Boolean;
var I: Integer { simply to show code to allocate/deallocate locals }
begin
 { This function does nothing! }
end;

The begin statement generates the following code:

MOV AX,DS ; Load DS selector into AX
NOP ; Additional space for patching
INC BP ; Indicate a far frame
PUSH BP ; Save odd BP
MOV BP,SP ; Set up stack frame
PUSH DS ; Save DS
MOV DS,AX ; Initialise DS
SUB SP,2 ; Allocate space for local variables
PUSH SI ; Save SI
PUSH DI ; Save DI

The end statement generates the following code:

POP DI ; Restore DI
POP SI ; Restore SI
LEA SP,[BP-2] ; Deallocate space for local variables
POP DS ; Restore DS
POP BP ; Restore odd BP
DEC BP ; Adjust BP
RETF 4 ; Remove parameters and return

➤ Listing 1

8 The Delphi Magazine Issue 15

like a waste of time. However, like
most things in life, all is not what it
seems! When Windows loads a
program into memory it does one
of the following:
➣ For exported functions in EXE

files the MOV AX,DS at the entry
point is replaced by two NOP in-
structions. This means that the
MakeProcInstance will now work
as designed: the AX register will
not be overwritten.

➣ For exported functions in DLL
files the MOV AX,DS and the
following NOP instruction are
replaced with MOV AX,xxxx
where xxxx is the segment
address of the DLL’s automatic
data segment (this is why the
NOP instruction is required: MOV
AX,xxxx requires 3 bytes
whereas MOV AX,DS only uses
two bytes).

Therefore, it’s the Windows load
program which makes your code
compatible with MakeProcInstance
(for DLLs MakeProcInstance is a
waste of time anyway, it simply
returns the address of the original
exported function back to you).

How Smart Callbacks Work
If you have smart callbacks en-
abled in your Delphi installation
(this is the default setting), the
linker will search for all occur-
rences of exported functions which
start with MOV AX,DS followed by an
NOP instruction (for EXE files) and
change this to MOV AX,SS plus NOP.
The effect of this is that when
Windows loads your executable
into memory it will not change this
code.

So, when smart callbacks are
used, the AX register is set to the
SS value. In line 7 of the entry code
in Listing 1 the AX is copied to the
DS register, the end result being
that the stack and data segment
registers are the same.

This is why smart callbacks
make the assumption that the DS
and SS registers should hold the
same value. Due to the way the
entry code is created you can see
that MakeProcInstance will have no
effect. The AX register which it so
kindly set up for you is immediately
trashed by the first line in the entry
code.

Why Smart Callbacks
Stop Calls From
External Applications
If you attempt to subclass a
window from another application
using an exported function in your
EXE file you will get GPFs as soon
as you attempt to access any of the
variables in your own data seg-
ment. This is because, on entry to
your exported function, the SS seg-
ment value will be that of the caller,
not yours. So the code generated
when using the smart callback
compiler directive will set the DS
register to the same value as the SS
register from the calling applica-
tion. So at this point DS does in fact
equal SS, but unfortunately it’s not
yours! The task at hand is how to
get round this problem so we can
export a callback from the EXE file.

If you’re a bit squeamish about
bending the rules you should take
note of the statement on page 178
of the Object Pascal Language
Guide: “Unless a callback routine in
an application is to be called from
another application (which isn’t
recommended anyway) you
shouldn’t have to ever select the
{$K-} state.” Now is your chance to
leave...

Overcoming
The SS=DS Assumption
I faced a problem in that the stand-
ard begin statement for the ex-
ported function will always end up
with the DS register being invalid. I
had to overcome this problem in

some way. As I needed to know the
value of the application’s DS
register I make use of the MakeProc-
Instance API (that’s what it’s for
after all) to create the prolog code
described previously. My next task
was to replace the exported func-
tion entry code with something
which provided the same function-
ality as the standard entry code but
was compatible with MakeProcIn-
stance. Listing 2 shows my new
‘exported’ function.

The first thing I did was to re-
move the old entry code by remov-
ing the export keyword and
replacing it with far and assembler
keywords. The far keyword will
cause the compiler to generate dif-
ferent entry and exit code. Listing
3 (over the page) shows the code
that the compiler generates (from
page 177 of the Language Guide).

As I don’t have any local vari-
ables the SUB SP,LocalSize code
will not be generated.

I then had to manually add code
to make up for the code no longer
generated by the compiler auto-
matically (since, as far as the com-
piler is concerned, it is not being
exported – well, it is going to be
exported, it’s just that it doesn’t
know that!). The first 4 lines of
AsmWndProc does this. The second
line of code (MOV DS,AX) loads the
data segment with the correct
value as set up by the MakeProcIn-
stance generated code. Skipping to
the end of the function, I had the
same problem with the exit code. I

function AsmWndProc(Handle: hWnd; Msg: Word; wParam: word;
 lParam: LongInt): LongInt; far; assembler;
asm
 { Entry code to complete functionality of exported function }
 PUSH DS { Save caller’s data segment }
 MOV DS,AX { Load local data, from MakeProcInstance }
 PUSH SI { Save caller’s source index }
 PUSH DI { Save caller’s destination index }
 { Code to call the method }
 PUSH Handle
 PUSH Msg
 PUSH wParam
 PUSH lParam.Word[2]
 PUSH lParam.Word[0]
 PUSH MyWndProcAddr.Word[6] { Puts the Self ’hidden’ parameter }
 PUSH MyWndProcAddr.Word[4] { on the stack }
 CALL [TFarProc(MyWndProcAddr)] { Call the method }
 { Exit code to complete standard functionality of exported function }
 POP DI { Restore callers destination index }
 POP SI { Restore callers source index }
 POP DS { Restore callers data segment }
end;

➤ Listing 2

10 The Delphi Magazine Issue 15

had to manually add the code not
generated by the compiler. The last
three lines of AsmWndProc do that.

To call the method I needed to
push the parameters on the stack
along with the object instance
address (the Self parameter which
all methods accept as a hidden
parameter) then call the method.
To do this I needed both the
method address and the object ad-
dress. This was done by defining a
method pointer called MyWndProc-
Addr which is of type TMyWndProc.
The interesting thing about
method pointers is that they are
really two pointers. The first
pointer is the address of the
method and the second pointer is
the address of the object (ie the
value of Self). You can see from
Listing 3 how the Self pointer is
pushed on the stack:

PUSH MyWndProcAddr.Word[6]
PUSH MyWndProcAddr.Word[4]

I then needed to call the method. I
had a bit of trouble getting the com-
piler to accept the syntax of the
CALL statement until I realised that
all I needed was a typecast, as the
first pointer is the one I want
anyway. So the call is:

CALL [TFarProc(MyWndProcAddr)]

Stack Checking
A final problem I had in testing was
that if I had the stack checking op-
tion on I got GPFs again. As I
guessed, once I looked into it I
found that the compiler generated
extra steps in the entry code which
caused the AX register to be
trashed again. To get round this, I
have explicitly switched the stack
checking directive off just before
the function. This will override any
global options.

Demo Application
A demo project, SUBCLEXE.DPR is
included on this month’s disk
which allows you to subclass win-
dows from other 16-bit applica-
tions. The application does two
things. When it receives a message
it lists the details in the listbox at
the bottom of the form (unless the
message is one of wm_mousemove,

wm_SetCursor and wm_NCHitText as
there are too many of them). It
keeps the last 100 messages. If the
message is a wm_getminmaxinfo it
will process the message and
restrict the window size to the
values you specify.

Figure 1 shows the single
window displayed when you run
the application.

When the form is first displayed
both the outline and listbox will be
empty. Click the Enum Windows but-
ton to take a snapshot of the win-
dows currently present in the
system. After a few seconds the
windows will appear in a standard
hierarchy of parent-child relation-
ships in the outline window. The
window class is in square brackets
and the window text is in quotes. If
you are running on Windows95 I
attempt to identify if the window is
a 16-bit window so that 32-bit

windows do not appear in the list.
See the IsWindow16Bit function in
the unit. I don’t know if it’s 100%
but then again, this is just a demo!

You can choose one of the win-
dows to subclass by selecting it in
the outline window then clicking
on the Subclass button. To make it
easier to identify windows I have
added the FindWindow button. When
you click this button the cursor will
change to a cross and the mouse
movements will be captured. As
you move it over windows the rele-
vant window will be selected in the
outline window. Click the left
mouse button when you are over
the window of interest then click
the Subclass button to start getting
that window’s messages.

To process the wm_getminmaxinfo
messages you really need to get a
parent form (whose parent is the
desktop) which is sizeable (an

The asm statement generates the following code:

 INC BP ; Indicate a far frame
 PUSH BP ; Save odd BP
 MOV BP,SP ; Set up stack frame
 PUSH DS ; Save DS

The end statement generates the following code:

 MOV SP,BP ; Remove locals and saved DS
 POP BP ; Restore odd BP
 DEC BP ; Adjust BP
 RETF 10 ; Remove parameters and return

➤ Listing 3

➤ Figure 1

12 The Delphi Magazine Issue 15

example is Delphi’s own edit
window of class TEditWindow).
When you subclass the window
and attempt to resize it, it will be
restricted to the values in the spin
edit controls.

Initialising,
Subclassing And Tidying Up
As MakeProcInstance should only
ever be called once for the life of an
application I do this in the
FormCreate method. This variable is
defined as type TFarProc.

You can see from the code on the
disk that the enumeration of the
16-bit windows is done in three
methods (BtnEnumClick, EnumWin-
dowsProc and EnumChildProc).

Interestingly, the last two are call-
back functions called by windows
which make use of the smart call-
back option I’m trying to circum-
vent elsewhere in the program. I
don’t need to call MakeProcInstance
for these. To identify 16-bit win-
dows I call SetWindowLong for each
window (passing the original
WndProc address so no damage is
done) because the value returned
is nil if you attempt this for a 32-bit
window. I don’t know if there is a
better way to do this.

When subclassing we simply do
the standard SetWindowLong and
pass the address which is returned
from MakeProcInstance. The old
window’s procedure is stored.

For ‘un-subclassing’ (I’m not too
sure what the official term is for
this but ‘un-subclassing’ seems OK
to me!) we just call SetWindowLong
and pass the original value to
unhook us – Ahah, perhaps that’s
the term!

FreeProcInstance is called during
FormDestroy to clean up the
resource.

That’s about it really. Just a
quick and dirty method of sub-
classing windows without the need
to use a DLL.

John Chaytor lives in Brighton,
England, and can be contacted via
CompuServe as 100265,3642

14 The Delphi Magazine Issue 15

	Smart Callbacks Directive {$K}
	Why Use Smart Callbacks?
	How MakeProcInstance Works
	How Smart Callbacks Work
	Why Smart Callbacks Stop Calls From External Applications
	Overcoming The SS=DS Assumption
	Stack Checking
	Demo Application
	Initialising, Subclassing And Tidying Up

